1,1,2,2-Tetrafluoro-2-(polyfluoroalkoxy)ethanesulfonyl Fluorides

Ting-Ji Huang, Zhi-Xia Dong, and Jean'ne M. Shreeve*

Received February 4, 1987

Several new 1,1,2,2-tetrafluoro-2-(polyfluoroalkoxy)ethanesulfonyl fluorides, RrOCF2CF2SO2F (Rf = CF3CH2, CF3CF2CH2, CF₃CF₂CF₂CH₂, CH₃CH₂, C(CF₃)₂H, CF₃CH(CF₃), CH₃C(CF₃)₂, CH₂CF₂CF₂CF₂CH₂, and C(CH₂O)₄), were prepared in good yield by fluorinating their corresponding esters with SF₄ in anhydrous hydrogen fluoride. Under the conditions used, cleavage of the acyl-oxygen bond or the carbon-sulfur bond was negligible. In addition, CF₃CH₂OCF₂CF₂SO₂OCH₂CF₃ and CF₃CH₂-OCF₂CF₂SO₂N(CH₃)₂ were formed when CF₃CH₂OCF₂CF₂SO₂F was reacted with CF₃CH₂OH and (CH₃)₂NH.

Introduction

Sulfur tetrafluoride has been demonstrated to be an extremely useful and versatile fluorinating reagent, particularly with molecules that contain one or more of a variety of organic functional groups, such as -C(O)OH, -C(O)H, -C(O)-, -OH, or $-C \equiv N$, or with inorganic compounds, e.g., $SeO_2 \rightarrow SeOF_2 \rightarrow SeF_4$. Apropos of the work reported here, earlier workers utilized sulfur tetrafluoride for the fluorination of the carbonyl functionality of esters to form difluoroethers,¹⁻⁴ e.g.

$$XArOC(O)Y \xrightarrow{SF_4/HF} XArOCF_2Y$$

$$X = H, NO_2; Y = F, CF_3$$

$$R_fC(O)OR \xrightarrow{SF_4/HF} R_fCF_2OR$$

$$R_f = C_7F_{15}, C_2F_5O(CF_2CF_2O)_2CF_2;$$

$$R = C_2F_5CH_2, (CF_3)_2CH, (CF_3)_3C$$

$$ROC(O)R_fC(O)OR \xrightarrow{SF_4/HF} ROCF_2R_fCF_2OR$$

$$R_{f} = CF_{2}CF_{2}CF_{2}; R = (CF_{3})_{2}CH$$

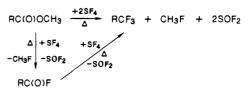
Recently, we reported the high-yield, straightforward preparation of polyfluoroalkyl esters of difluoro(fluorosulfonyl)acetic acid, $R_fOC(O)CF_2SO_2F$, from the reactions of tetrafluoroethane- β -sultone with polyfluoroalkyl alcohols.⁵

$$CF_2 - CF_2 = H_FOH - H_F = H_FOC(O)CF_2SO_2F$$

$$O - SO_2 = SO_2$$

$$R_{f} = CF_{3}CH_{2}, CF_{3}CF_{2}CH_{2}, CF_{3}CF_{2}CF_{2}CH_{2}, (CF_{3})_{2}CCH_{3}, CF_{3}CH(CH_{3}), (CF_{3})_{2}CH, C_{7}F_{15}CH_{2}, CH_{2}(CF_{2})_{3}CH_{2}OC(O)CF_{2}SO_{2}F$$

When alkanediols, -triols, and -tetraols were used, RCH_n- $(CH_2OC(O)CF_2SO_2F)_{3-n}$ (R = CH₃, n = 0; R = O₂N, n = 0; $OC(O)CF_2SO_2F$, n = 2; $R = CH_2OC(O)CF_2SO_2F$, n = 0) were formed.5 In (polyfluoroalkyl)difluoro(fluorosulfonyl)acetates, there are reaction centers at carbonyl and fluorosulfonyl that are available to react with (polyfluoroalkyl)-alcohols to produce alkanesulfonates.5 Our interest was the fluorination of the carbonyl functionality in the (polyfluoroalkyl)difluoro(fluorosulfonyl)acetates with the sulfur tetrafluoride to form corresponding α ,- α -difluoro ethers. This has led to a general and direct synthesis of tetrafluoro(polyfluoroalkoxy)ethanesulfonyl fluorides, RfOCF2CF2SO2F.


$$R_1OC(O)CF_2SO_2F \xrightarrow{SF_4/HF} R_1OCF_2CF_2SO_2F$$

Results and Discussion

Uncatalyzed fluorination of carboxylic esters with sulfur tetrafluoride required vigorous conditions. Because of the easy scission of the carbon-oxygen single bond in esters, trifluoromethyl-containing compounds often were formed.⁶

- (1) Boswell, G. A., Jr.; Ripka, W. C.; Scribner, R. M.; Tullock, C. W. Org. React. (N.Y) 1974, 21, 1.

- (4)
- Reat. (N.I.) 1974, 21, 1. Sheppard, w. A. J. Am. Chem. Soc. 1961, 83, 4860. Sheppard, W. A. J Org. Chem. 1964, 29, 1. De Pasquale, R. J. J. Org. Chem. 1973, 38, 3025. Huang, T.-J.; Dong, Z.-X.; Shreeve, J. M. Inorg. Chem., in press. Hasek, W. R.; Smith, W. C.; Engelhardt, V. A. J. Am. Chem. Soc. (6)1960, 82, 543.

However, when anhydrous hydrogen fluoride (AHF) was used in large excess (10-15 times) with sulfur tetrafluoride, moderate yields of ethers were obtained under less rigorous temperature conditions. However, to obtain good product yields, a considerably larger excess of AHF was required per mole of ester functionality when R_f was bulky, e.g., (CF₃)₂CCH₃ or (CF₃)₂CH, or with $C[CH_2OC(O)CF_2SO_2F]_4$.

It is interesting to speculate on the role of AHF in these fluorination reactions with SF₄. Does the catalytic behavior result from activation of the carbonyl group or of the sulfur tetrafluoride molecule? Results from two independent studies^{7,8} on the effect of AHF concentration on the rate of reaction of SF₄ with RC(O)F and ROH indicated that, in contrast to the view held previously, coordination of AHF to a carbonyl group inhibited its reaction with SF_4 . Therefore, it is possible that the catalytic activity arises from activation of SF₄ by forming a strongly polar HF-SF₄ complex.

$$HF + SF_4 \Longrightarrow SF_4 \cdot HF \Longrightarrow SF_3^+ + HF_2^-$$

Spectral and conductometric measurements by Gillespie⁹ showed the existence of the ionic species SF_3^+ and HF_2^- in the SF_4 -HF system.

$$R-C=0 + SF_3^+ \rightleftharpoons R-C \xrightarrow{+}_{F} O \xrightarrow{-}_{SF_2} \xrightarrow{-SOF_2} R-C \xrightarrow{+}_{F} + \underbrace{+HF_2^-}_{F}$$

RCF2OCF2R + HF

In our work, the proposed mechanism for the reaction of acid fluorides with SF₄ seems consistent with our experience in utilizing SF_4/AHF to fluorinate the esters in this study.

$$R_{1}OC(O)CF_{2}SO_{2}F + SF_{3}^{+} \rightleftharpoons R_{1}OC \underbrace{-}_{CF_{2}SO_{2}F} \xrightarrow{F} \underbrace{-SOF_{2}}_{CF_{2}SO_{2}F}$$

$$HF_{2}^{-} \xrightarrow{F} R_{1}OCF_{2}CF_{2}SO_{2}F \xrightarrow{-HF} R_{1}OCF_{2}CF_{2}SO_{2}F$$

This mechanism involves electrophilic attack by SF_3^+ on the

- (7) Dmowski, W.; Kolinshi, R. Pol. J. Chem. 1978, 52, 547; Dmowski, W.
- J. Fluorine Chem. 1986, 32, 255 (8) Kollonitsch, J.; Marburg, S.; Perkins, L. M. J. Org. Chem. 1975, 40, 3808.
- Azeem, M.; Brownstein, M.; Gillespie, R. J. Can. J. Chem. 1969, 47, (9) 4159.

carbonyl oxygen to form a mesomeric cation that eliminates SOF_2 to form a carbonium ion. The latter is attacked by the hydrogen difluoride ion to form the product. These new ethers are all colorless, slightly volatile or nonvolatile liquids at 25 °C. They are stable toward water and are thermally stable to at least 170 °C when pure.

Experimental Section

Materials. $CF_3CH_2OC(O)CF_2SO_2F$, $CF_3CF_2CH_2OC(O)CF_2SO_2F$, $CF_3CF_2CF_2CH_2OC(O)CF_2SO_2F$, $CF_3CF_2CF_2CH_2OC(O)CF_2SO_2F$, $CF_3CH_2OC(O)CF_2SO_2F$, $(CF_3)_2CH_2OC(O)CF_2SO_2F$, $CF_3CH(CH_3)OC(O)CF_2SO_2F$, $CF_3C(CF_2CH_2OC(O)CF_2SO_2F)_2$, and $C[CH_2OC(O)CF_2SO_2F]_4$ were prepared according to literature methods.⁴ SF₄ and HF were obtained from Air Products and Chemicals, Inc., and were used as received.

General Procedures. A conventional Pyrex glass vacuum line equipped with Heise Bourdon tube and Televac pressure gauges was used to manipulate the volatile starting materials and to free products from impurities. Volatile compounds were measured quantitatively by using *PVT* techniques. Infrared spectra were recorded as liquid films between KBr disks with a Perkin-Elmer 599 spectrometer. ¹⁹F NMR spectra were obtained on a JEOL FX-90Q Fourier transform spectrometer operating at 84.26 MHz. CDCl₃ was used as the solvent with CFCl₃ as an external reference. Chemical shifts upfield from CFCl₃ were assigned negative values. ¹H NMR spectra were recorded by using a VG 7070 HS mass spectrometer with an ionization potential of 17 or 70 eV. Elemental analyses were performed by Beller Mikroanalytisches Laboratorium, Göttingen, West Germany.

Preparation of 1,1,2,2-Tetrafluoro-2-(2,2,2-trifluoroethoxy)ethanesulfonyl Fluoride, CF₃CH₂OCF₂CF₂SO₂F. Sulfur tetrafluoride (40 mmol) and hydrogen fluoride (40 mmol) were condensed into a Hoke stainless-steel vessel charged with CF₃CH₂OC(O)CF₂SO₂F (4 mmol) at -196 °C and then warmed slowly to 25 °C. After 8 h of shaking, the vessel was heated at 70-80 °C for 85-90 h. The reaction mixture was transferred into a stainless-steel vessel charged with dry NaF (about 55 mmol). After the HF was absorbed, the reaction mixture was distilled by using trap-to-trap fractionation. The product was held in a trap at -70 °C. Both unreacted SF₄ and SOF₂ were collected in a trap at -196 °C. The yield was 90%.

The infrared spectrum of $CF_3^{A}CH_2^{B}OCF_2^{C}CF_2^{D}SO_2F^{E}$ is as follows: 2981 w, 1463 vs, 1422 m, 1337 s, 1302 s, 1248–1138 vs, br, 1079 w, 1044 m, 972 m, 812 s, 795 m, 738 w, 665 w, 649 w, 612 s, 543 w cm⁻¹. The ¹H NMR spectrum shows a quartet at δ 4.41 ($J_{A-B} = 7.57$ Hz). The ¹⁹F NMR spectrum has overlapping triplets at ϕ 44.65 (E) ($J_{D-E} \sim J_{C-E} =$ 5.73 Hz), a triplet of triplets at ϕ –74.59 (A) ($J_{A-C} = 2.5$ Hz), a multiplet at ϕ –84.61 (C), and a doublet of triplets at ϕ –111.73 (D) ($J_{C-D} = 4.15$ Hz). The mass spectrum (CI⁺) is as follows (m/e, species, %): 281, M – 1⁺, 0.2; 263, M – F⁺, 1.5; 199, CF₃CH₂OCF₂CF₂⁺, 9.5; 149, CF₃CH₂OCF₂⁺, 27.1; 83, SO₂F⁺, 100; 69, CF₃⁺, 16.1; 67, SOF⁺, 41.1. Anal. Calcd for C₄H₂F₈O₃Si: C, 17.02; H, 0.71; F, 53.90. Found: C, 17.15; H, 0.70; F. 54.1.

Several compounds were prepared in a similar manner from $R_fOC_{(O)}CF_2SO_2F$ and SF_4/HF . Yields were based on the amount of $R_fOC_{(O)}CF_2SO_2F$ used. The materials are colorless liquids at room temperature.

CF₃^A**CF**₂^B**CH**₂^C**OCF**₂^D**CF**₂^E**SO**₂^G**F** (Yield 76%). IR: 2978 w, 1466 vs. 1330 m, 1320 m, 1300 m, 1298 vs, 1210 vs, 1150 s, 1110 m, 1095 m, 1040 w, 1020 w, 975 w, 805 s, 737 m, 614 m cm⁻¹. ¹H NMR: δ 4.44 (C, tr) ($J_{B-C} = 11.47$ Hz). ¹⁹F NMR: ϕ 44.36 (G, complex overlapping triplets), -84.15 (A, br s), -85.37 (D, mult), -111.78 (E, d of tr), -124.29 (B, tr of tr); $J_{D-E} = 4.27$ Hz, $J_{E-G} = 5.61$ Hz, $J_{B-D} = 2.44$ Hz. MS (Cl⁺) (m/e, species, %): 313, M - F⁺, 4.7; 249, M - SO₂F⁺, 12.0; 199, CF₃CF₂CH₂OCF₂⁺, 12.0; 133, CF₂SO₂F⁺, 100; 119, CF₃CF²⁺, 24.1; 83, SO₂F⁺, 15.7; 69, CF₃⁺, 59.9; 67, SOF⁺, 59.2; 64, SO₂⁺, 8.3. Anal. Calcd for C₅H₂F₁₆O₃S: C, 18.07; H, 0.60; F, 57.23. Found: C, 18.09; H, 0.60; F, 57.3.

CF₃^A**CF**₂^B**CF**₂^C**CH**₂^D**OCF**₂^E**CF**₂^G**SO**₂**F**^H (Yield 85%). IR: 2984 w, 1462 s, 1419 m, 1337 s, 1305 s, 1240 s, 1132 s, 1075 w, 1041 m, 1018 m, 979 m, 925 w, 909 m, 804 s, 760 w, 728 m, 681 w, 662 w, 611 s, 539 m, 512 w, 489 w, 465 w, 419 w cm⁻¹. ¹H NMR: δ 4.51 (tr). ¹⁹F NMR: ϕ 44.54 (H, tr of tr), -81.20 (A, tr), -85.13 (E, tr), -111.6 (G, d or tr), -121.2 (B, mult), -127.7 (C, tr); *J*_{C-D} = 12.21 Hz, *J*_{E-G} = 9.15 Hz, *J*_{G-H} = 5.37 Hz. MS (EI⁺) (*m/e*, species, %): 299, M − SO₂F⁺, 3.92; 183, CF₂CF₂SO₂F⁺, 10.9; 133, CF₂SO₂F⁺, 5.85; 119, CF₃CF₂⁺, 67.4; 83, SO₂F⁺, 19.3; 69, CF₃⁺, 59.9; 67, SOF⁺, 100; 50, CF₂⁺, 72.5. Anal. Calcd for C₆H₂F₁₂O₃S: C, 18.80; H, 0.52; F, 59.69. Found: C, 19.14; H, 0.65; F, 60.0.

CF₃CH(CH₃)OCF₂CF₂SO₂F (Yield 81.6%). IR: 3000 w, 1453 s, 1382 w, 1325 w, 1288 m, 1231 s, 1200 s, 1170 s, 1150–1130 s, br, 1078 m,

1019 w, 981 w, 804–792 s, br, 649 w, 610 m cm⁻¹. ¹H NMR: δ 4.79 (CH, complex), 4.80 (*CH, complex), 1.53 (CH₃, d), 1.57 (*CH₃, d). ¹⁹F NMR: ϕ 44.31 (SF, tr of tr), -79.72 (CF₃, tr), -79.66 (CF₃*, tr), -83.85 (OCF₂, mult), -111.66 (CF₂S, d of tr); $J_{CH_3-CH} = 6.59$ Hz, $J_{CF_1-OCF_2} = 3.42$ Hz, $J_{SF-OCF_2} = 5.99$ Hz, $J_{SF-CF_3S} = 5.61$ Hz, $J_{CF_2-CF_2} = 4.52$ Hz. MS (EI⁺) (m/e, species, %): 227, M – CF₃*, 12.5; 163, CF₃CH(CH₃)OCF₂*, 11.1; 133, FSO₂CF₂*, 4.5; 97, CF₃CH(CH₃)⁺, 65.7; 93, CF₂CO(CH₃)^+, 5.1; 83, SO₂F⁺, 3.9; 77, CH₃CCF₂*, 100; 69, CF₃*, 33.0; 67, SOF⁺, 79.6. Anal. Calcd for C₅H₄F₈O₃S: C, 20.27; H, 1.35; F, 51.35. Found: C, 20.43; H, 1.36; F, 51.6.

 $(CF_3)_2CHOCF_2CF_2SO_2F$ (Yield 75%). IR: 2998 w, 1470 s, 1368 m, 1332 w, 1309 m, 1260 vs, 1222 vs, 1197 m, 1160 s, 1118 m, 1071 w, 988 w, 908 w, 820 m, 800 m, 733 w, 696 m, 665 w, 643 w, 612 m cm⁻¹. ¹H NMR: δ 4.75 (CH, sept). ¹⁹F NMR: ϕ 45.00 (SF, pentet), -73.90 (CF₃, d), -83.22 (OCF₂, mult), -111.95 (CF₂S, d of tr); $J_{CF_3-CH} = 5.01$ Hz, $J_{CF_3S-OCF_2} = 3.66$ Hz, $J_{CF_2S-SF} = J_{CF_2O-SF} = 5.86$ Hz. MS (CI⁺) (*m*/*e*, species, %): 351, M + 1⁺, 0.1; 331, M - F⁺, 1.0; 267, M - SO₂F⁺, 40.3; 217, (CF₃)₂CHOCF₂⁺, 13.4; 151, (CF₃)₂CH⁺, 73.0; 83, SO₂F⁺, 1.1; 69, CF₃⁺, 100; 67, SOF⁺, 75.4 Anal. Calcd for C₅HF₁₁O₃S: C, 17.14; H, 0.29; F, 59.71. Found: C, 17.32; H, 0.27; F, 59.6.

CH₃C(CF₃)₂OCF₂CF₂SO₂F (Yield 85%). IR: 2990 w, 1464 vs, 1303 vs, 1250 vs, 1210 vs, 1166–1150 vs, br, 1092 m, 1027 s, 997 w, 819 m, 798 s, 760 w, 740 w, 706 w, 646 w, 611 m cm⁻¹. ¹H NMR: δ 2.01 (CH₃, sept). ¹⁹F NMR: ϕ 44.89 (SF, overlapping triplets), -76.79 (OCF₂, mult), -78 (CF₃, mult), -111.90 (CF₂S, d of tr); $J_{CF_3-CH_3} = 0.98$ Hz, $J_{CF_3-CF_2S} = 4.27$ Hz, $J_{OCF_2-CF_2S} = 4.03$ Hz, $J_{SF-CF_2O} = 5.61$ Hz, $J_{SF-CF_2S} = 5.98$ Hz. MS (EI⁺) (*m/e*, species, %): 295, M - CF₃⁺, 0.8; 275, CF₂C(CH₂⁺)OCF₂CF₂SO₂F, 5.0; 165, CH₃C(CF₃)₂⁺, 6.6; 145, CF₂-C(CF₃)CH₂⁺, 57.7; 133, FSO₂CF₂⁺, 6.1; 117, FSOCF₂⁺, 6.0; 95, (CF₃CCH₂)⁺, 10.1; 83, SO₂F, 1.5; 77, CF₂C(CH₃)⁺, 31.7; 69, CF₃⁺, 59.4; 67, SOF⁺, 100. Anal. Calcd for C₆H₃F₁₁O₃S: C, 19.78; H, 0.82; F, 57.42. Found: C, 19.89; H, 0.86; F, 56.9.

CH₃CH₂OCF₂CF₂SO₂F (Yield 69%). IR: 2999 s, 2950 m, 2931 m, 1467 vs, 1383 m, 1338 vs, 1245 vs, 1207 s, 1153 s, 1127 s, 1053 m, 1029 s, 985 m, 879 w, 852 w, 797 s, 759 m, 746 m, 656 m, 613 s, 548 m, 530 w, 513 w, 491 m, 466 w, 432 w cm⁻¹. ¹H NMR: δ 4.25 (CH₂, q), 1.37 (CH₃, tr); $J_{CH_3-CH_2} = 7.08$ Hz. ¹⁹F NMR: ϕ 42.92 (SF, tr of tr), -84.15 (OCF₂, tr of d), -111.8 (CF₂S, d of tr); $J_{CF_3-S-F} = 5.30$ Hz. $J_{OCF_2-CF_2S} = 5.00$ Hz. MS (EI⁺) (m/e, species, %): 227, M -1⁺, 2.02; 145, C₂H₅OCF₂CF₂⁺, 1.93; 95, C₂H₅OCF₂⁺, 58.7; 83, SO₂F⁺, 2.71; 67, SOF⁺, 100; 64, SO₂⁺, 7.2.6; 51, CF₂H⁺, 17.8; 45, C₂H₅O⁺, 6.21. Anal. Calcd for C₄H₅F₃O₃S: C, 21.05; H, 2.19; F, 41.67. Found: C, 21.25; H, 2.11; F 41.1.

Preparation of $CF_3CH_2OCF_2CF_2SO_2OCH_2CF_3$ and $CF_3CH_2OCF_2C-F_2SO_2N(CH_3)_2$. Each of these compounds was prepared in a similar manner. To 2 mmol of LiOCH_2CF_3 (or 4 mmol of HN(CH_3)_2) in a 50-mL Pyrex glass vessel was added 2 mmol of $CF_3CH_2OCF_2CF_2SO_2F$. After 1 h at 0 °C and several hours at 25 °C, the product was removed under vacuum and purified by trap-to-trap distillation.

CF₃CH₂OCF₂CF₂SO₂OCH₂CF₃ (Yield 65%). IR: 2990 w, 1425 s, 1335 m, 1304–1286 s, br, 1225 s, 1179 s, 1148–1129 s, br, 1080 w, 1050 m, 1029 s, 969 s, 860 m, 820 m, 790 m, 745 w, 670 m, 650 w, 613 m, 565 w, 544 w, 442 w cm⁻¹. ¹H NMR: δ 4.68 (CH₂OSO₂, q), 4.38 (CH₂OC(O), q). ¹⁹F NMR: ϕ -74.77 (CF₃, tr), -84.84 (OCF₂, mult), -113.23 (CF₂SO₂, mult); $J_{CF_3-CH_2} = 7.57$ Hz. MS (CI⁺) (*m/e*, species, %): 343, M - F⁺, 1.4; 279, CF₃CH₂OCF₂CF₂SO₂O⁺, 8.4; 199, CF₃CH₂OCF₂CF₂CF₂SO₂O⁺, 8.4; 199, 30.6; 83, CF₃CH₂⁺, 100; 69, CF₃⁺, 8.0. Anal. Calcd for C₆H₇₁₀O₄S: C, 19.89; H, 1.10; F, 52.49. Found: C, 20.02; H, 1.20; F, 52.4.

CF₃CH₂OCF₂CF₂SO₂N(CH₃)₂ (Yield 62%). IR: 2940 w, br, 1455 w, 1420 m, 1375 s, 1325 m, 1290 s, 1215–1170–1110 s, br, 1040 w, 975 s, 965 s, 955 s, 740 m, 720 s, 660 w, 640 w, 598 s, 590 s, 552 w, 540 w, 490 m cm⁻¹. ¹H NMR: δ 4.36 (CH₂, q), 3.07 (CH₃, mult). ¹⁹F NMR: ϕ -74.25 (CF₃, tr of tr), -85.08 (OCF₂, mult), -114.9 (CF₂SO₂, mult); $J_{CF_3-CH_2} = 7.81$ Hz, $J_{CF_3-OCF_2} = 2.38$ Hz. MS (EI⁺) (*m/e*, species, %): 307, M⁺, 1.7; 208, C₂F₄SO₂N(CH₃)₂⁺, 3.2; 155, CF₂SO₂N(CH₃)₂⁺, 6.0; 149, CF₃CH₂OCF₂⁺, 3.9; 111, C₃H₂F₃O, 3.1; 108, SO₂N(CH₃)₂⁺, 30.4. Anal. Calcd for C₆H₈F₇NO₃S: C, 23.45; H, 2.60, F, 43.32. Found: C, 23.43; H, 2.60; F, 43.0.

Preparation of C(CH₂OCF₂CF₂SO₂F)₄. SF₄ (100 mmol) and anhydrous HF (150 mmol) were condensed into a 75-mL stainless-steel vessel charged with $C(CH_2OC(O)CF_2SO_2F)_4$ (2.5 mmol) at -196 °C and then warmed slowly to room temperature. Shaking was continued for 8 h. The vessel was heated at 75-80 °C for 85-90 h. Volatile materials (SF₄, SOF₂, HF) were pumped out (HF must be absorbed by NaF). A liquid product and solid sulfur were left in the vessel. The colorless liquid was separated by filtration and then distillation. The yield was 50%. The infrared spectrum of $C(CH_2OCF_2CF_2SO_2F)_4$ is as follows: 2980 w, 1455 vs, 1412 w, 1337 s, 1215 vs, br, 1150 s, br, 1053 w, 1011 m, 967 w, 800

s, br, 662 m, 620 s, 544 m, 490 w, 464 w cm⁻¹. The ¹H NMR spectrum was a singlet at δ 4.11. The ¹⁹F NMR spectrum showed a multiplet at ϕ 43.26 (SF), a multiplet at ϕ -86.18 (OCF₂), and overlapping triplets $(G_3)_{1}^{(1)}$ (GF₂S); $J_{CF_2S-OCF_2} = 5.96$ Hz, $J_{CF_2S-SF} = 5.86$ Hz. MS (EI⁺) (*m*/*e*, species, %): 664, CHC(CH₂OCF₂CF₂SO₂F)₃⁺, 0.8; 464, [C₃H₂(CH₂OCF₂CF₂SO₂F)₂]⁺, 22.2; 451, [CHC-Anal. Calcd for $C_{13}H_8F_{20}O_{12}S_4$: C, 18.06; H, 0.93; F, 43.98. Found: C, 18.31; H, 1.02; F, 43.0.

Preparation of F^GSO₂CF₂^ECF₂^DOCH₂^CCF₂^BCF₂^ACF₂^BCH₂^COCF₂^D- $CF_2^ESO_2F^G$. This compound was prepared in a similar manner from $FSO_2CF_2C(O)OCH_2CF_2CF_2CF_2CH_2OC(O)CF_2SO_2F$ and SF_4/HF . Tye yield was 59.5%. It is a colorless liquid. IR: 2978 w, 1455 s, 1410 w, 1327 s, 1240 s, 1198 s, 1170–1125 s, br, 1067 w, 1032 m, 1017 w, 970 m, 891 w, 800 s, 747 w, 723 w, 658 w, 610 s, 532 w cm⁻¹. ¹H NMR: δ 4.51 (CH₂, tr). ¹⁹F NMR: ϕ 44.59 (G, tr of tr), -85.02 (D, mult), -111.49 (E, d of tr), -120.33 (B, mult), -125.16 (A, mult); $J_{B-C} = 12.94$ Hz, $J_{E-G} = 5.74$ Hz, $J_{D-G} = 5.49$ Hz, $J_{D-E} = 5.01$ Hz. MS (CI⁺): 557, M - F⁺, 6.3; 473, CF₂CF₂OCHCFCF₂CF₂CH₂OCF₂CF₂SO₂F⁺, 13.3; 377, $CH_2CF_2CF_2CF_2CH_2OCF_2CF_2SO_2F^+$, 16.4; 357, CHCFCF2CF2CH2OCF2CF2SO2F+, 15.3; 213, CH2OCF2CF2SO2F+, 8.4; 183, CF₂CF₃SO₂F⁺, 5.7; 167, CF₂CF₃SOF⁺, 13.9; 133, CF₂SO₂F⁺, 13.3; 83, SO₂F⁺, 20.7; 67, SOF⁺, 100. Anal. Calcd for C₉H₄F₁₆O₆S₂: C, 18.75; H, 0.69; F, 52.78. Found: C, 18.99; H, 0.80; F, 52.4.

Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, to NSF Grant CHE-8404974, to AFOSR Grant 82-0247, and to GRI for support of this work.

Registry No. CF₃CH₂O(CF₂)₂SO₂F, 109012-55-7; CF₃CF₂CH₂O(C- $\begin{array}{l} F_2)_2 SO_2 F, \ 109012-56-8; \ CF_3 (CF_2)_2 CH_2 O(CF_2)_2 SO_2 F, \ 109012-57-9; \\ CF_3 CH(CH_3) O(CF_2)_2 SO_2 F, \ 109012-58-0; \ (CF_3)_2 CHO(CF_2)_2 SO_2 F, \\ \end{array}$ 109012-59-1; CH₃C(CF₂)₂O(CF₂)₂SO₂F, 109012-60-4; EtO(CF₂)₂SO₂F, 84506-53-6; CF₃CH₂O(CF₂)₂SO₂OCH₂CF₃, 109012-61-5; CF₃CH₂O- $(CF_2)_2SO_2NMe_2$, 109012-62-6; $C(CH_2O(CF_2)_2SO_2F)_4$, 109012-63-7; FSO₂(CF₂)₂OCH₂(CF₂)₃O(CF₂)₂SO₂F, 109012-64-8; SF₄, 7783-60-0; HF, 7664-39-3; CF₃CH₂O₂CCF₂SO₂F, 108344-43-0; CF₃CF₂CH₂O₂C-CF₂SO₂F, 108795-92-2; CF₃(CF₂)₂CH₂O₂CCF₂SO₂F, 108795-93-3; EtO₂CCF₂SO₂F, 756-21-8; (CF₃)₂CHO₂CCF₂SO₂F, 108795-89-7; CF3CH(CH3)O2CCF2SO2F, 108795-90-0; MeC(CF3)2O2CCF2SO2F, 108795-91-1; CF₂(CF₂CH₂O₂CCF₂SO₂F)₂, 108815-93-6; C(CH₂O₂C-F₂SO₂F)₄, 108795-95-5; LiOCH₂CF₃, 69163-14-0.

> Contribution from the Department of Chemistry, University of Missouri, Columbia, Missouri 65211

Equilibrium and Kinetic Studies of the Peroxo Complex of Molybdenum(VI) in Acidic **Perchlorate Solution**

John D. Lydon, Lisa M. Schwane, and Richard C. Thompson*

Received December 30, 1986

The principal equilibrium between molybdenum(VI) and hydrogen peroxide in acidic perchlorate solution is $HMoO_3^+ + 2H_2O_2$ = $M_0O(O_2)_2 + H^+ + 2H_2O$. The value of the formation constant is $(9.4 \pm 0.6) \times 10^6$ M⁻¹ at 25 °C over the range [HClO₄] = 0.10-1.00 M at I = 1.00 M (LiClO₄); $\Delta H_f^\circ = -12 \pm 1$ kcal/mol and $\Delta S_f^\circ = -9 \pm 3$ cal/(K mol). Oxodiperoxomolybdenum(VI) shows an absorption maximum at 328 nm with an extinction coefficient of 1040 M^{-1} cm⁻¹. On the basis of spectral variations at $[HClO_4] \le 0.10$ M, oxodiperoxomolybdenum(VI) is proposed to hydrolyze according to $MoO(O_2)_2 + H_2O = MoO(OH)(O_2)_2^{-1}$ at [HClO₄] \leq 0.10 M, oxonperoxoniolydehum(v1) is proposed to hydrolyze according to MOO(O₂)₂ + H₂O = MOO(OH)(O₂)₂ + H⁺, with K_a = 0.014 M at 25 °C. The rapid formation of MoO(O₂)₂ was studied by stopped-flow procedures. The rate expression was determined to be d[MoO(O₂)₂]/dt = k_{forward}[HMoO₃⁺][H₂O₂]² - k_{reverse}[MoO(O₂)₂][H⁺]. At 25 °C and I = 1.0 M, k_{forward} = (2.3 ± 0.4) × 10⁶ M⁻² s⁻¹ + ((1.0 ± 0.1) × 10⁶ M⁻¹ s⁻¹)/[H⁺]. The dissociation rates for MoO(O₂)₂ were measured in the presence of sulfur(IV), a very rapid reductant toward H₂O₂. The rate expression is proposed to be -d[MoO(O₂)₂]/dt = k_{reverse}[MoO(O₂)₂][H⁺] + k_{S(IV)}[MoO(O₂)₂][S(IV)]; at 25 °C and I = 1.00 M, k_{reverse} = 0.31 ± 0.02 M⁻¹ s⁻¹ + (0.15 ± 0.01 c⁻¹)/[H⁺¹]. A section scheme is proposed to which extra variables of the scoord provide lises do textribute. The results $s^{-1}/[H^+]$. A reaction scheme is proposed in which entry and loss of the second peroxide ligand is rate-determining. The results of concentration-jump experiments are in accord with the reaction scheme. The results are compared with those obtained by other investigators for oxodiperoxochromium(VI). Diperoxo complexes of d^0 transition-metal ions appear to be much more reactive toward substrates than the monoperoxo complexes. Results of preliminary studies of the peroxo complex(es) of tungsten(VI) are presented.

Introduction

Molybdate is commonly used as a catalyst in the iodometric determination of hydrogen peroxide. A detailed kinetic study of this system in acidic solution has been reported.¹ It was proposed that a diperoxo complex of molybdenum(VI) was the reactive species toward iodide. Peroxo complexes of molybdenum(VI) have been used as oxidants for organic substrates² and are implicated as intermediates in the catalyzed epoxidation of olefins by alkyl hydroperoxides.³⁻⁸ A number of crystal structures of peroxo-

- Smith, R. H.; Kilford, J. Int. J. Chem. Kinet. 1976, 8, 1.
- (2)Jacobsen, S. E.; Muccigrosso, D. A.; Mares, F. J. Org. Chem. 1979, 44, 921.
- Mimoun, H.; deRoch, I. S.; Sajos, L. Tetrahedron 1970, 26, 37.
 Chong, A. O.; Sharpless, K. B. J. Org. Chem. 1977, 42, 1587.
 Sharpless, K. B.; Woodard, S. S.; Finn, M. G. Pure Appl. Chem. 1983, 1920 55, 1823.
- Mimoun, H. J. Mol. Catal. 1980, 7, 1.
- Chaumette, P.; Mimoun, H.; Saussine, L.; Fisher, J.; Mitschler, A. J. Organomet. Chem. 1983, 250, 291.
- (8)Bach, R. D.; Wolber, G. J.; Coddens, B. A. J. Am. Chem. Soc. 1984, 106, 6098.

molybdenum(VI) complexes have been reported,⁹ and solution studies of the complexes have been reviewed.¹⁰

We have studied the redox chemistry of peroxo complexes of several d⁰ transition-metal ions and compared the results to the corresponding reactions of hydrogen peroxide.¹¹⁻¹⁶ An important objective of this work is to increase our understanding of how metal ions modify the reactivity of peroxide. The advantage in using d⁰ transition-metal ions is their ability to rapidly form peroxo complexes with large formation constants. We have recently turned our attention to molybdenum(VI) and are finding that its peroxo complex is markedly more reactive than hydrogen peroxide

- See: Persdotter, I.; Trysberg, L.; Stomberg, R. Acta Chem. Scand., Ser. A 1986, A40, 83 and references cited therein. (9)
- (10) Connor, J. A.; Ebsworth, E. A. V. Adv. Inorg. Chem. Radiochem. 1964, 6, 279.

- b, 219.
 (11) Thompson, R. C. Inorg. Chem. 1982, 21, 859.
 (12) Thompson, R. C. Inorg. Chem. 1983, 22, 584.
 (13) Thompson, R. C. Inorg. Chem. 1984, 23, 1794.
 (14) Thompson, R. C. Inorg. Chem. 1985, 24, 3542.
 (15) Thompson, R. C. Inorg. Chem. 1986, 25, 184.
 (16) Lydon, J. D.; Thompson, R. C. Inorg. Chem. 1986, 25, 3694.